New DR-S variant, W12 with oil-feed

HPMT • April 21, 2022

New DR-S variant, W12 with oil-feed

The new variant of our universal drill DR-S with internal coolant or "oil-feed" is now available.


To your advantage, we are now pleased to offer the new variant of our universal drill DR-S with internal coolant or "oil-feed".

Having a 140º point angle increases cutting action and produces a sharp chisel edge on the drilling point. These types of drill points are self-centering and are the most durable types of drill points


The uniform distribution of cutting force and oil out of the hole improves chip evacuation, resulting in better surface quality and longer tool life.

 

Other Features & Benefits includes:-

The DR-S is just one of the many drills we offer. The following is a list of all HPMT drills and their appropriate applications:

By HPMT August 2, 2024
Our recent customer tool test on NiTiCo 30 C46 achieved impressive results, achieving 10,000 holes in automotive valve rocker arms, surpassing industry standards by 300%!
By HPMT May 6, 2024
Precision machining is a critical process in the machining industry that involves removing material from a workpiece to create complex and intricate shapes. This process requires utmost precision and accuracy to achieve the desired results. It is commonly used in most industries industries including aerospace, automotive, medical, and electronics, where the smallest error can have disastrous consequences.
By HPMT March 29, 2024
Aluminium is a versatile and widely used material in machining, due to its lightweight yet durable properties. From the aerospace to automotive sectors, mastering the precision drilling of aluminium is paramount for achieving superior end products. In this comprehensive guide, we will explore the tips, techniques, and tools necessary to master the art of aluminium drilling. When it comes to drilling aluminium, using the right tools is crucial. Aluminium has unique characteristics that require specific machining tools designed for this material. Using improper tools can lead to poor results, including rough edges, burrs, and even damage to the material itself. To ensure the best outcome, it is essential to invest in high-quality machining tools specifically designed for aluminium drilling.
By HPMT March 25, 2024
When it comes to manufacturing, efficiency and precision are key factors that can greatly impact the success of a business. One tool that has proven to be invaluable in achieving these goals is the solid carbide tool. Solid carbide tools are mainly composed of hard and wear-resistant tungsten carbide particles, bonded by cobalt for strength. In this article, we will explore the various advantages of using solid carbide tools in manufacturing and how they can improve efficiency and precision in machining processes.
By HPMT March 14, 2024
When it comes to precision in manufacturing, every detail matters. The ability to create precise and accurate holes is crucial in many industries, from aerospace to automotive. That's where flat drills come into play. These machining tools are specifically designed to provide precise and clean-cut holes, making them an essential tool for any manufacturing process.  Flat drills, also known as flat bottom drills are unique in their design. Unlike traditional drills that create round holes, flat drills have a flat cutting edge that produces holes with a flat bottom. This feature allows for greater precision and control, making them ideal for applications that require tight tolerances.
By HPMT January 17, 2024
Superalloys are a group of high-performance materials that exhibit exceptional strength, both heat and corrosion resistance. These unique properties make them crucial for a wide range of industries, including aerospace, automotive, and power generation. However, machining superalloys can be a daunting task due to their inherent challenges. In this comprehensive guide, we will delve into the intricacies of superalloy machining and provide you with valuable insights and strategies to overcome these challenges. Machining superalloys pose several challenges that stem from their unique material properties. Firstly, superalloys have high strength and hardness, making them difficult to cut. Their high melting points also contribute to increased tool wear and thermal deformation. Additionally, superalloys tend to harden during machining, leading to increased cutting forces and surface roughness. These challenges, combined with the need for tight tolerances and surface finish, demand precision machining techniques and specialized cutting tools. This is why precision machining plays a pivotal role in achieving the desired performance and functionality of superalloy components. The demanding applications of superalloys require tight tolerances and excellent surface finish to ensure optimal functionality, reliability, and longevity. By utilizing precision machining techniques, including high-rate machining and multi-axis milling, manufacturers can achieve the required precision and accuracy. Furthermore, precision machining minimizes the need for secondary operations, reducing production time and costs.
More Posts
Share by: